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Abstract
Motivated by the problem of launching a rocket to reach a target apogee altitude, this paper
presents an algorithm solving a chance-constrained infinite horizon optimal control problem. Using
actuated airbrakes to control longitudinal drag forces, it minimizes the apogee altitude error while
respecting input rate chance constraints. The effects of parameters uncertainty and disturbances
are estimated using Monte Carlo simulations and incorporated in the problem. The solution
is stored in memory as a look-up control table on a computationally limited rocket, which is
successfully flown with an apogee altitude error of 1% for a target altitude of 800m.

Nomenclature

Notations
N (µ,Σ) Gaussian distribution of mean µ

and variance Σ
∧ conjuction (logical AND)
∨ disjunction (logical OR)

Variables
x rocket state
z, v altitude and vertical velocity
u normalized airbrakes position
wk Gaussian-distributed disturbance
µw(·) mean of disturbance
Σw(·) variance of disturbance
λ input rate constraint dual variable
µ(·) feedback control policy
J(·) optimal cost

Functions
f(·) nominal dynamics
f0(xpad, ζj) state at motor burnout from xpad

for MC parameter ζj
g(·) step cost
gapg(·) apogee cost
Īu(·), Iu(·) exact and smooth input rate con-

straint indicator functions
Icrit(·) critical region indicator function
rµu(x) risk to violate the input rate con-

straint from x using µ
rµcrit(x) risk to enter Xcrit from x using µ

Abbreviations
MC Monte Carlo
DP Dynamic Programming
VI Value Iteration
DoF degree of freedom
CoM, CoP center of mass, center of pressure

Parameters and Constants
xpad,xgoal initial and goal states
hgoal target altitude
∆hgoal max. apogee height deviation
∆t dynamics discretization time
Mid number of MC simulations
M0 number of burnout positions
∆u input rate constraint probability

threshold
bu maximum actuation difference
u̇max maximum airbrakes velocity
tmin(x) min. time to reach x from xpad
Nm time to apogee for MC trajectory
Ji number of MC samples for node xi
imax maximum number of iterations of

the bisection method

Sets
X controllable region
Xapg apogee region
Xcrit critical region
X0 burnout region
Xend end region
U feasible inputs set
γmin(v), limiting trajectories for full/zero
γmax(v) airbrakes deployment
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CHANCE-CONSTRAINED OPTIMAL ALTITUDE CONTROL OF A ROCKET

1. Introduction

Controlling a nonlinear system with uncertain parameters and external disturbances is a challenging task,
especially for aerospace applications which require high success guarantees. In this work, we consider the
design of a guidance and control algorithm for a student-built rocket for the Spaceport America Cup1, the
world’s largest intercollegiate rocket engineering competition. The event consists of the launch of a rocket to
precisely reach a predefined height at apogee. By including actuated airbrakes on our system, our team is
able to control longitudinal drag forces to adjust the rocket’s ascent speed and reach the target altitude. The
design of such an algorithm is particularly challenging due to the inherent nonlinear and uncertain dynamics
(e.g., drag forces), external disturbances (e.g., wind) and physical constraints, such as actuator delays, limited
memory and computing capabilities.

Figure 1: Rocket with airbrakes: surfaces controlled by a servomotor which can increase the longitudinal
drag forces. The airbrakes are located behind the center of pressure to guarantee stability.

In presence of external random disturbances and model mismatch, the problem of reaching a target
apogee while satisfying constraints can be expressed as a chance-constrained optimal control problem. Instead
of using a worst-case analysis as in robust model predictive control methods [3], which assume bounded
disturbances and model mismatch, chance constraints ensure the satisfaction of constraints with a pre-
defined probability. Chance constraints are present in many applications [1, 5, 6, 12], including aerospace
applications [8,9,15,20,26]. Taking into account chance constraints generally requires to reformulate them as
deterministic constraints, so the resulting nonlinear optimization problem can be solved using an off-the-shelf
nonlinear programming solver. In [8] and [26] for instance, Monte Carlo sampling of the random parameters
is used and the chance constraints are approximated using the kernel density estimation technique and a
split-Bernstein approach, respectively. In both case, computationally expensive Monte Carlo (MC) sampling
prohibits the computation of trajectories in real time.

Another approach to solve optimal control problems on discretized state-input spaces is Dynamic
Programming (DP). By defining independent joint constraints and using Boole’s inequality, [20] presented
a chance-constrained DP algorithm to solve such a problem for a system subject to additive Gaussian-
distributed disturbances of known mean and variance. In practical applications, the characteristics of those
Gaussian disturbances are unknown and the different sources of uncertainty and modeling errors which they
represent can be difficult to identify. For instance, due to nonlinear drag forces which depend on the velocity
of the rocket and on uncertain parameters, typical assumptions on the disturbances (e.g. Gaussian additive
noise of known constant variance) do not capture the real behavior of the system.

Also, as the airbrakes actuator delays are comparable to control update rates, it is important to include
input rate constraints in the problem formulation to limit the maximum rate of change of extension of
the airbrakes. In general, solving optimal control problems can result in bang-bang type controllers, which
would not capture the true behavior of this system. However, taking into account such constraints in DP
formulations is a challenge, as traditional approaches consist of extending the state of the rocket with previous
control inputs, resulting in longer computational time and requiring more on-board memory.

Furthermore, certifying guidance and control algorithms for aerospace applications and their imple-
mentation on computationally limited hardware constitute challenges in themselves. Successful optimization-
based algorithms for trajectory optimization and control such as model predictive control [21] require consid-
erable on-board computing capabilities and bring issues such as possible loss of feasibility. For this reason, a

1Spaceport America Cup: https://www.spaceportamericacup.com/
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reference trajectory is typically computed offline and tracked during the flight using a feedback controller. If
the initial conditions are uncertain, several reference trajectories can be generated and saved in memory on
the system [22]. On the other hand, it is possible to use DP to directly compute the optimal control feedback
policy on a discretized state-input space. However, this would require considerable on-board memory to store
the solution and as the final time to reach apogee is unknown, work such as [20] is not directly applicable.
This motivates the development of a new approach which is simple, robust, efficient and ensures the success
of the flight.

The contribution of this paper is a novel guidance and control algorithm consisting of three steps.
First, we use a reduced-order model of the system and incorporate the effects of external disturbances, model
missmatch and parameter uncertainty as Gaussian-distributed disturbances which mean and variance are
identified by running Monte Carlo simulations using a high-fidelity model of the rocket and of its environment
for a range of parameters, such as aerodynamic coefficients, motor efficiencies and wind. Second, since the final
time at apogee is unknown, we define the control problem as an infinite horizon chance-constrained optimal
control problem. To include input rate constraints, we use a novel formulation which does not require the
increase of the number of decision variables and could be used for DP and Reinforcement Learning. This
problem is solved offline to generate a look-up control table which is saved in memory on the rocket using an
optimized discretization scheme. Finally, during the flight, a look-up table storing the solution of the problem
is accessed and control inputs are used in real time. Importantly, our algorithm provides an estimate of the
probability of success of the flight, which is critical since the competition allows for a single attempt.

This paper is organized as follows. In Section 2, we formulate the chance-constrained optimal control
problem, present the disturbance identification method and our novel formulation of input rate constraints.
In Section 3, we reformulate the original problem using dual programming, Boole’s inequality and Bellman’s
Principle of Optimality and present an algorithm to solve the problem. In Section 4.1, we discuss implemen-
tation details as well as convergence and optimality guarantees of the algorithm. The method presented in
this paper is verified on a rocket built by our team2 in a test flight and the results are presented in Section
4. We conclude in Section 5 and provide details about the high fidelity simulator in Appendix A.

2. Problem Formulation

The goal of the competition consists of launching a rocket from an initial state on the launchpad xpad to
precisely reach an altitude at apogee hgoal. The flight consists of two phases. First, the rocket flies until
motor burnout, during which no control is allowed. Then, the rocket is controlled using actuated airbrakes.
Since the conditions of the flight are known in advance, it is possible to compute the solution to the problem
offline by simplifying the dynamics to obtain a tractable statespace which can be discretized.

2.1 Rocket Dynamics

The dynamics of the rocket can be described using a 13-dimensional state describing the 6 degrees of freedom
(DoF) of the system, as described in the appendix in Equation (23). To reach the target apogee, the drag
forces can be controlled by adjusting the extension of the airbrakes u. To reduce the number of state variables
and since the airbrakes position u only influences the longitudinal component of the trajectory, the dynamics
are simplified by removing 2 planar and 3 rotational DoF using the following assumptions:

• Pitch is a fixed function of altitude. First, a reference flight is simulated and its pitch values are stored
as a function of the altitude to remove this variable.

• Only drag and gravity are the forces taken into account, with drag forces acting along the longitudinal
axis of the rocket.

• No Torques, removing rotations from the DoF. Assuming the rocket to be symmetrical along its roll
axis and since the drag acts directly along the longitudinal axis, no torque is induced on the rocket.

• Lateral coordinates (x, y) do not influence the final apogee altitude and are not considered.

Therefore, we consider the following 2-dimensional nonlinear stochastic discrete-time system

xk+1 = f(xk, uk) + wk(xk) (1a)
wk(xk) ∼ N (µw(xk),Σw(xk)), (1b)

2ARIS: Swiss Space Initiative http://aris-space.ch/
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where f(·) denotes the nominal model of the dynamics, xk = [zk, vk] ∈ R2 denotes the rocket state with
zk the altitude and vk the longitudinal velocity, and the control input uk ∈ R corresponds to the airbrakes
position. wk ∈ R2 corresponds to the disturbances, capturing both external disturbances and model miss-
match between f(·) and the 6 DoF nonlinear dynamics. The dependency of µw(·) and Σw(·) on the state xk
is crucial, since drag forces vary as a function of the speed and the wind speeds vary as a function of altitude.

2.2 Model Mismatch and Disturbances Identification using Monte Carlo Simulations

To identify µw(·) and Σw(·), Mid MC simulations are run using a high fidelity model of the rocket with
varying parameters {ζm}Mid

m=1 including motor efficiency, drag coefficients, launch rail headings and wind. To
ensure that the statespace is uniformly visited and improve the estimates, the simulations are run using 10
reference trajectories uniformly distributed in the statespace which are tracked with a proportional controller.
This defines a dataset of transitions

{(
xmk , u

m
k ,x

m
k+1

)}m=1...Mid

k=0...Nm
, used to infer µw(·) and Σw(·) as follows.

First, the statespace is discretized into 201 different altitude and speed values using a rectangular
discretization grid, which edges are denoted as xi. For each transition

(
xmk , u

m
k ,x

m
k+1

)
in the dataset, a

disturbance sample wj for the closest node of the grid xi := argmax(||xmk − xi||2) is computed as

wj(xi) = xmk+1 − f(xmk , u
m
k , ζ

m). (2)

For each node xi with Ji samples, the local mean and variance are then computed as

µiw =
1

Ji

Ji∑
j=1

wj(xi), Σi
w =

1

Ji−1

Ji∑
j=1

(wj(xi)− µiw)T (wj(xi)− µiw). (3)

Finally, µw(·) and Σw(·) are computed by fitting 3rd order polynomial surfaces through
{
Σi

w

}
and{

µiw
}
. This method is arbitrary but enables the user to choose a parameterization for µw(·) and Σw(·),

which we choose as a 3rd polynomial surface since drag forces are approximately proportional to the square
of the apparent velocity, defined in the appendix. As mentioned in the introduction, this is equivalent to
defining a Gaussian process for wk(x) with mean µw(x) and kernel Σw(x) which captures prior knowledge
about the system coming from Monte Carlo simulations. More details are presented in Section A.4.

2.3 Statespace Sets Definition

The goal of reaching a target altitude at apogee is not achievable for any arbitrary state x ∈ R2. To allow
a simple formulation of the optimal control problem, the statespace is decomposed into different regions
according to the deterministic nominal dynamics f(·). Since the drag force is max/minimized by fully
deploying/retracting the airbrakes, we define two boundary trajectories γmin(v) and γmax(v) which are used
to bound the set of states X from which xgoal is reachable. For instance, a state x ∈ {v > 0, h > γmax(v)}
would always result in overshoot of the apogee altitude despite full airbrakes deployment. γmin(v) and
γmax(v) are computed by back-propagating f(·) in time from the apogee altitude hgoal±∆hgoal, assuming
full and zero deployment of the airbrakes and ∆hgoal = 5% · hgoal. Note that this method provides only
an approximation of the controllable region X , since disturbances have infinite support and therefore, a
disturbance to reach xgoal exists for any state x. Using these definitions, the statespace is decomposed into a
controllable region X , an apogee region Xapg, a critical region Xcrit, a burnout region X0 and an end region
Xend, defined as

X =
{
x ∈ R2 | v > 0, γmin(v) < h < γmax(v)

}
(4a)

Xapg =
{
x ∈ R2 | v ≤ 0, γmin(v) < h < γmax(v)

}
(4b)

Xcrit = R2 \ {X ∪ Xapg} (4c)

X0 =
{
x ∈ R2 | x = f0(xpad, ζj), j=1. . .M0

}
(4d)

Xend = ∅, (4e)

where f0(xpad, ζj) denotes the function simulating the launch of the rocket from xpad up to motor burnout for
a set of M0 parameters ζj ∈ Rp. Each x0 ∈ X0 corresponds to a single MC simulation from xpad, including
the motor and with retracted airbrakes. Xend is defined to ensure a bounded cost, as shown in Section 3.5.
Any state xk ∈ X follows the dynamics in Equation (1) whereas any state xN ∈ (Xapg ∪ Xcrit) transitions
with probability 1 to Xend, where it remains ∀k ≥ N + 1.
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Xcrit

γmax(v)

z [m]
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γmin(v)
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Xcrit
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0

Figure 2: Statespace definition. γmax(v) and γmin(v) bound the set of states x ∈ X from which the apogee
target state xgoal = [hgoal; 0] is reachable.

2.4 Input Rate Constraints

On the rocket, the airbrakes are actuated using a servomotor which induces an actuation delay to match the
actuation signal uk. To take this delay into account, we limit the rate of change of the airbrakes position by
enforcing an input rate constraint.

A straightforward approach consists of extending the state xk as x̃k=[xk, uk−1]T , with uk−1 the previous
input. Then, it is either possible to plan with the additional input rate constraint uk ∈ {uk | |uk−uk−1|≤bu},
with bu the maximum input difference from k to k+1, or to penalize the actuation difference by adding a
term to the original cost, such as (uk−uk−1)2. Both methods have two drawbacks:

1. x̃k has dim(uk) more dimension(s) than xk, requiring more on-board memory to store the solution and
longer offline computation time to compute it.

2. An estimate of uk−1, computed on-board, is required.

To alleviate these problems, we use a novel formulation which consists of constraining the difference in
actuation forward in time. The input rate constraint function for a feedback control policy µ(·) is defined as

gu(x, µ,w) := (µ (f(x, µ(x))+w)− µ(x))2 − b2u. (5)

Due to the dependence on wk, the input rate constraints are formulated as chance constraints at
probability level ∆u as

Pr {gu(xk, µ,wk) ≤ 0 ∀k ≥ 0} ≥ 1−∆u. (6)

Note that these constraints neglect the fact that the airbrakes are initially retracted until burnout
(u0 = 0). Given a maximum airbrakes velocity u̇max, it is possible to compute the maximum airbrakes
position that can be reached t seconds after burnout. After computing the minimum time tmin(xk) to reach
each state xk, we enforce additional input rate constraints for the states close to burnout as

µ(xk) ∈ U(xk) = [0,min (u̇maxtmin(xk), 1)] , (7)
with tmin(xk) = min

x0∈X0

(t ≥ 0|xk = ft(x0, 0)),

where ft(x0, 0) denotes the state reached from x0 at time t using u(t) = 0 ∀t ≥ 0. This constraint ensures
that for any state xk close to burnout (states for which u̇maxtmin(xk) < 1), the control inputs are limited by
the maximum airbrakes position that can be reached when starting from the initial state at burnout x0 ∈ X0

which is the closest in time to the state xk. Finally, for states x ∈ Xapg, we enforce µ(x) = 1 if h > hgoal
and µ(x) = 0 otherwise. As bu depends on the discretization time ∆t used for the discrete time dynamics in
Equation (1), it is computed as bu = u̇max∆t.

5
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2.5 Infinite Horizon Stochastic Optimal Control Problem

Since the time to reach apogee is unknown, we state the problem as an infinite horizon optimal control
problem. This will yield a time-invariant state feedback policy µ(x) which, for a discretized statespace, can
be computed offline and stored as a look-up table on the rocket. Since the goal of the competition is to reach
a precise target altitude at apogee, we define the step cost g(·) as

g(xk, µ,wk) :=


0 if xk ∈ X ∪ Xend
αh(zk−hgoal)2 if xk ∈ Xapg
1 if xk ∈ Xcrit

(8)

where αh:=1/∆h2goal to enforce the continuity of g(·) and improve the numerical properties of our algorithm.
The chance-constrained infinite horizon optimal control problem can thus be stated as

Problem 1. Chance Constrained Altitude Control Problem

min
µ

E

{ ∞∑
k=0

g(xk, µ,wk)

}
(9a)

s.t. Pr {gu(xk, µ,wk) ≤ 0 ∀k ≥ 0} ≥ 1−∆u (9b)
xk,wk satisfy (1) ∀k ≥ 0 (9c)
µ(xk) ∈ U(xk) ∀k ≥ 0 (9d)
x0 ∈ X0. (9e)

3. Risk Minimization with Input Rate Chance Constraints

In this section, we reformulate Problem 1 using Boole’s Inequality and dual programming. Then, we leverage
Bellman’s Principle of Optimality [4] and propose an algorithm to solve the chance-constrained problem. Our
approach is inspired from and extends [20] for infinite horizon chance-constrained optimal control problems.

3.1 Conservative Reformulation using Boole’s Inequality

The joint chance constraint in Equation (6) can be rewritten using Boole’s inequality as

Pr

{ ∞∧
k=0

gu(xk, µ,wk) ≤ 0

}
= 1−Pr

{ ∞∨
k=0

gu(xk, µ,wk) > 0

}
≥ 1−

∞∑
k=0

Pr {gu(xk, µ,wk) > 0} . (10)

We then define the following exact and smooth indicator functions

Īu(x, µ,w) :=

{
1 if gu(x, µ,w) > 0

0 otherwise
, Iu(x, µ,w) :=

(
µ (f(x, µ(x))+w)− µ(x)

bu

)2

. (11)

This allows to express each individual input rate chance constraint as a function of the expected value
of Īu(·), since

Pr {gu(xk, µ,wk) > 0} = E
{
Īu(xk, µ,wk)

}
. (12)

Then, we rewrite the sum of probabilities in Equation (10) as
∞∑
k=0

Pr {gu(xk, µ,wk) > 0)} =

∞∑
k=0

E{Īu(xk, µ,wk)} = E

{ ∞∑
k=0

Īu(xk, µ,wk)

}
. (13)

Using Equations (10) and (13), a conservative reformulation of the input rate constraint (9b) is

E

{ ∞∑
k=0

Īu(xk, µ,wk)

}
≤ ∆u. (14)

Since the purpose of input rate chance constraints consists of reducing the rate of change in actua-
tion and avoiding bang-bang type control, it is preferable to replace Īu(·) with its smooth approximation
Iu(·), defined in Equation (11). This is a conservative approximation since it satisfies Iu(x, µ(x),w) >
Īu(x, µ(x),w) ∀{x, µ(·),w}. Therefore, Problem 1 is conservatively reformulated as follows:

6
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Problem 2. Conservative Chance Constrained Optimal Altitude Control Problem

min
µ

E

{ ∞∑
k=0

g(xk, µ,wk)

}
(15a)

s.t. E

{ ∞∑
k=0

Iu(xk, µ,wk)

}
≤ ∆u (15b)

Eqs. (9c)(9d)(9e). (15c)

Note that we replaced the original input rate chance constraint by a constraint involving an infinite
sum of indicator functions. In the following section, we replace Problem 2 by its dual problem and leverage
Bellman’s Principle of Optimality [4] to compute the values of the infinite sums in Equations (15a) and (15b).

3.2 Dual Problem and Risks Definitions

The dual of Problem 2 is given as

Problem 3. Dual Optimal Altitude Control Problem

max
λ≥0

min
µ

E

{ ∞∑
k=0

(g+λ·Iu) (xk, µ,wk)

}
− λ·∆u (16a)

s.t. xk,wk satisfy (1) ∀k ≥ 0 (16b)
µ(xk) ∈ U(xk) ∀k ≥ 0 (16c)
x0 ∈ X0, (16d)

with λ the dual variable corresponding to the input rate constraint. Note that for a given λ, the inner
minimization problem in Equation (16a) can be rewritten using Bellman’s Principle of Optimality [4] as

Jλ(x) = min
µλ

E

{ ∞∑
k=0

(g+λ·Iu) (xk, µ
λ,wk)

∣∣∣∣∣x0=x, xk+1=f(xk, µ
λ(xk))+wk

}
(17a)

= min
µλ

E
{

(g + λ·Iu) (x, µλ,w)+Jλ(x+)
}
, (17b)

where x+:=f(x, µλ(x))+w. By discretizing the state and input spaces, this equation can be solved using the
VI method [4], by setting arbitrary initial values for Jλ(x) and iteratively solving Equation (17) for all x.
In Section 3.5, we prove that this method always converges to a unique solution given any initial guess for
Jλ(x). To make the structure of the cost explicit, we define the following indicator function:

Icrit(xk) :=

{
1 if xk ∈ Xcrit

0 otherwise
, (18)

Using Icrit(·) and Iu(·), we define rµcrit(·) and rµu(·) the risks to respectively enter the critical region
Xcrit and to violate the input rate constraints from any state x0 as

rµcrit(x0) := E

{ ∞∑
k=0

Icrit(xk)

∣∣∣∣∣x0, µ

}
, rµu(x0) := E

{ ∞∑
k=0

Iu(xk)

∣∣∣∣∣x0, µ

}
. (19)

Given a policy µ and using the VI method, they can be computed independently by evaluating:

rµcrit(x0) = E {Icrit(x0) + rµcrit(f(x0, µ(x0)) + w0)} (20a)

rµu(x0) = E {Iu(x0) + rµu(f(x0, µ(x0)) + w0)} . (20b)

Using these functions and the definition of the original cost g(·) in Equation (8), we note that for a
given control policy µλ and dual variable λ, the cost in Equation (17) can be rewritten as

Jλ(x0) = E
{
αh(zN−hgoal)2

∣∣x0, µ
λ
}

+ rµ
λ

crit(x0) + λ·rµ
λ

u (x0), (21)

7
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with zN the altitude at apogee. This reformulation explicitly shows that minimizing the cost in Equation
(16a) for an appropriate λ minimizes the sum of the risk to enter Xcrit and of the deviation to the target
apogee while respecting input rate chance constraints.

To ensure the satisfaction of input rate chance constraints for the entire flight, starting from the state
of the rocket on the launchpad xpad, it is possible to use the values of the risks rµu(x0) from all burnout states
x0 ∈ X0. Since the airbrakes are retracted until motor burnout at x0 ∈ X0, this enables the computation
of a solution on a discretized state space which is smaller than if all states xk ∈ R2 had to be considered.
To compute rµu(xpad) and rµcrit(xpad), we use the risk values for all burnout states x0 ∈ X0 and weight the
contribution of each term by its probability Pr(x0|xpad)=p(ζj)=1/M0, with X0 and M0 defined in Section
2.3. Indeed, using (a) Bellman’s Principle of Optimality [4], (b) the law of the Unconscious Statistician [10]
and Icrit(xpad) = 0, we obtain

rµcrit(xpad)
(a)
= E

{
Icrit(xpad) + rµcrit(f0(xpad, ζj))

} (b)
=
∑
ζj

rµcrit(f0(xpad, ζj)) · p(ζj)

= 1/M0 ·
∑

x0∈X0

rµcrit(x0), (22a)

rµu(xpad) = 1/M0 ·
∑

x0∈X0

rµu(x0). (22b)

Note that assuming that a control input policy µ(x) is computed such that the input rate chance
constraint is satisfied (rµu(xpad) ≤ ∆u), the critical risk rµcrit(xpad) provides a measure of the probability of
success of the flight. In the following section, we use these risk definitions and present an algorithm to solve
Problem 3, ensuring the satisfaction of input rate chance constraints for the entire flight from xpad.

3.3 Algorithm

We present an algorithm to solve Problem 3 offline, such that the solution µ(x) can be stored in memory
and used in real time as a look-up table. Compared to DP formulations as in [20] and since the problem was
defined as an infinite horizon optimal control problem, the resulting control input policy µ(x) is time-invariant
and does not require an estimate of the final time at apogee.

As presented in the previous section, for a fixed dual variable λ, it is possible to compute the optimal
cost Jλ(·), control policy µλ(·) and resulting risk rµ

λ

u (xpad) using the VI method. To find the optimal value
λ∗ ensuring the satisfaction of the input rate chance constraint, we use a root-finding algorithm as in [20].
Intuitively, our algorithm consists of sequentially computing Jλ(·) and µλ(·) for a fixed λ, computing the
resulting risk rµ

λ

u (·) and updating λ using the bisection method to satisfy the input rate chance constraint
rµ

λ

u (xpad) < ∆u. Since Jλ(·) is concave in λ and rµu is monotonically not increasing with respect to λ, any
root-finding algorithm is guaranteed to converge to a solution approximating the optimum of the original
primal problem 1, up to the duality gap and the approximation error of the solution of the dual problem
3 [20].

First, lines 1−5 check if the problem is feasible without the input rate constraint. If the chance
constraint is satisfied, then the solution is returned and the algorithm terminates. Otherwise, the algorithm
successively updates λ in step 9 and solves the dual problem in step 10 using the VI Method. The input risk
is then computed in step 11 and if rµ

λ

u = ∆u, the algorithm terminates and returns the optimal solution µλ.
Otherwise, we stop after imax iterations and return λhigh, guaranteeing that the error to the optimal dual
variable λ∗ for Problem 3 is bounded as |λhigh−λ∗| < λ+/2imax . Note that another root-finding algorithm
and stopping criterion as in [20] can also be used. The initial maximum value for λ is initialized with a value
λ+ chosen to satisfy the input rate risk constraint rµ

0

u (xpad) < ∆u.

3.4 Discretization of the State-Input Spaces

In order to apply to the Value Iteration method to solve Equations (17b) and (20b), it is necessary to
discretize the state and input spaces R2×R. Although general techniques exist to optimize the discretization
schemes of continuous spaces [24], we opt for an approach leveraging the structure of the problem. From the
definition of the statespace and to minimize the deviation to the apogee altitude, we constrain the optimal
action for any state inside the critical region Xcrit as µ(x) = 1 if z ≥ γmax(v) and µ(x) = 0 if z ≤ γmin(v).
Therefore, it suffices to only include states in the controllable region X in the discretized grid, and solve

8
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Algorithm 1 Risk Minimization with Input Rate Chance Constraints
Input. Maximum input rate bu, probability threshold ∆u, maximum num-
ber of iterations imax.
Output. Feasible optimal policy µ∗

1: Check if problem is feasible with λ = 0 (no input cost)
2: Compute µ0 = argminµE {

∑
k (Icrit + gapg) (xk)}

3: Compute input rate risk rµ
0

u (x0)

4: if rµ
0

u (xpad) < ∆u then
5: return µ0

6: {i, λlow, λhigh} ← {0, 0, λ+}
7: while i < imax do
8: i← i+ 1
9: λ← bisection(λlow, λhigh)

10:
{
Jλ, µλ

}
← ValueIteration(Equation (17))

11: Compute input rate risk rµ
λ

u (x)

12: if rµ
λ

u (xpad) = ∆u then
13: return µλ

14: else if rµ
λ

u (xpad) < ∆u then
15: λhigh ← λ

16: else if rµ
λ

u (xpad) > ∆u then
17: λlow ← λ

18: return µλhigh

the Bellman Equations (17b) and (20b) subject to the boundary conditions above and in Equation (7). To
optimize the resolution of this grid, it is split linearly into 200 different velocity values from zero to the
maximum controllable velocity vmax. Also, it is defined with a different scale of the height h for each velocity
v, as shown in Figure 3. For each v, the height h is discretized into 200 uniformly distributed points from the
critical minimum height γmin(v) to the critical maximum height γmax(v). As a state x could lie between grid
points, bilinear interpolation is used to interpolate its optimal control and cost values from the neighbouring
grid cells. To improve the accuracy of the interpolation, each curved horizontal segment between two vertical
grid lines is further subdivided into 10 linear segments, as shown in the close view of Figure 3. Note that this
additional subdivision is only used for interpolation and no optimal control and cost values are computed at
those nodes. The control input space U is discretized into 256 values uniformly distributed in [0, 1], which is
the maximum number of values that each control value u can represent as a byte.

z [m]
hgoal = 800 m

v [m/s]0
160

122 208

Figure 3: Discretization of X using a constant
scale for velocities and a velocity-dependent scale
for the heights. The close view shows the ad-
ditional subdivision of velocities to improve the
accuracy of the bilinear interpolation method.

Figure 4: Control table computed by the algorithm, with
a gray scale denoting the optimal airbrakes extension,
with u=1 in white and u=0 in black. In blue is the tra-
jectory of the rocket during the test launch. The solution
is saved in memory as a squared look-up table (top right).
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3.5 Proof of Convergence and Optimality

In this section, we show that the infinite horizon cost of Problem 3 is finite and the VI Method is assured to
find a unique solution for Equations (17, 20a, 20b). First, due to definitions of the statespace in Section 2.3,
any state xk ∈ X follows the dynamics in Equation (1) and transitions with a non-zero probability to either
X , Xcrit or to Xapg, whereas any state xN ∈ (Xapg ∪ Xcrit) transitions with probability 1 to Xend, where it
remains ∀k ≥ N + 1. Therefore, Problem 3 is equivalent to a Markov model which can be represented as in
Figure 5:

X

Xapg

Xcrit

Xend

λ·Iu

λ·Iu

gapg

Icrit
= 1 0λ·Iu

Figure 5: Markov chain model for Problem 3. Arrows denote possible transitions with their corresponding
cost above.

Due to the end region Xend from which no additional cost occurs and to the discretization of the state-
input spaces (Section 3.4), this problem is equivalent to a stochastic shortest path problem with a finite
number of states and inputs. Also, any policy is proper due to the dynamics3. Furthermore, the problem
is feasible since there exists policies (such as µ(x)=0 ∀x) which satisfy the input constraint. Hence, using
the Existence and Unicity of Solutions Theorem [4], the solution of the Bellman Equation in Equations
(17,20a,20b) is unique and the VI Method converges to their optimal value.

4. Results

4.1 Implementation

The VI method was implemented in C++. The high fidelity simulator for noise identification was written in
Matlab. The flight software was written in C.

The solution of Bellman Equations (17) and (20b) are efficiently computed in two steps. First, the
expectation operator E is performed by convolving Gaussian kernels representing the probability distributions
N (µw(x),Σw(x)) of each state x, which are scaled to match the discretization grid shown in Figure 3.
This operation is approximated using three box kernel and an offset for each point as in [17], reducing the
computational complexity from O(nr2) to O(n) with n the statespace dimension and r the radius of the
kernel. Secondly, the optimal control input policy µ(x) for each state x is computed by evaluating the cost
for each feasible control input u ∈ U . To efficiently iterate over all possible control inputs, the transition
vectors f(x, u) are precomputed ∀(x, u) ∈ X × U by integrating the dynamics in Equation (23) using a fifth
order Adams-Bashforth integration method with ∆t=0.4 s. The final solution is saved in memory as a lookup
table, requiring 40KB only. For a given state x estimated during the flight, the optimal control input is
bilinearly interpolated from the values of the states in the grid which are adjacent to x, as described in
Section 3.4.

4.2 Hardware

A model rocket was designed and built to demonstrate the proposed controller. The rocket is 1.85m long,
has a diameter of 0.1m and weights 4.25kg without the propellant. The motor is an AeroTech J460 with
an average thrust of 460 N and a total impulse of 805.5 N s developed during a burn of 1.8 s generated by
415 g of fast burning Blue Thunder propellant. The main body of the rocket is split into two parts connected
by the airbrakes section, as shown in Figure 1. The three airbrake plates have an exposed surface area of
11.5cm2 each at their maximum extension of 2.1cm. They are mounted on linear guides and are all controlled
by a single servomotor Futaba S3072HV with absolute positioning capabilities, for which the full airbrake
deployment time was measured to be 0.25 seconds. The servomotor is connected to a Raspberry Pi Model A+

3I.e. any policy leads the state to Xend since the rocket slows down due to gravity and drag and any state x with v < 0
transitions to Xend.
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running a state estimation algorithm fusing the accelerometer and gyroscope measurements from a MPU6050
and the altimeter readings from a BMP180. Two Altimax Simply altimeters are used for recovery and to
verify the final apogee altitude.

4.3 Test Launch

The altitude optimal control problem is defined with a target altitude hgoal = 800m. During a test flight on
October 6, our rocket reached approximately 808.2m as shown on Table 4. The final apogee estimates from
the three pressure sensors are reported in the table. Since the rocket is mostly stationary at apogee, there is
no measurement bias in the altimeter measurements which makes their measurement more reliable than the
fusion of the IMU with the altimeter sensor.

Apogee Altitude Relative Error

BMP180 809.5m ± 0.7m 1.2%

AltiMAX 1 807m ± 0.5m 0.9%

AltiMAX 2 808m ± 0.5m 1.0%

Mean 808.2m ± 0.6m 1.0%

Table 4: Measured apogee altitude for different sensors and relative errors for a target of 800m.

Figure 6 shows the control input u during the flight and the measured change in the drag coefficient,
computed as

Cd(t) =
2m(v̇(t) + g)

ρ(z(t))v(t)2Aref
,

where m is the rocket mass after motor burnout, ρ(·) is the atmospheric pressure, g the gravitational ac-
celeration, Aref the reference area and z, v and v̇ are those estimated and recorded during the flight. The
simulated Cd values in Figure 6 are computed as a function of u, v using Equation (28) and the properties
of the rocket, described in the appendix. Also, the input rate constraint is well respected, despite the peak
at t = 2.2s.

Figure 6: Simulated and measured drag coefficient. Despite model missmatch between simulated and mea-
sured drag, the airbrakes caused the rocket to reach the target apogee and the input rate constraints were
satisfied at all times.
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5. Conclusion

This work addressed the problem of altitude control of a rocket. We presented an algorithm solving a chance-
constrained infinite horizon problem and a method to identify a model of disturbances capturing the effects of
model missmatch, parameter uncertainty and external disturbances. To include input rate chance constraints,
a new approach was proposed which is suitable to any problem formulation using Bellman Equation, such as
DP and Reinforcement Learning. This problem was solved offline using an algorithm for which convergence
and optimality guarantees were provided. The solution was saved in memory as a look-up table from which
control inputs were accessed and used in real time. Our algorithm was successfully verified in a test flight,
with an apogee error of less than 1% for a target apogee of 800m. The problem formulation and resulting
algorithm proposed in this work could be used for multiple aerospace applications, such for the entry, descent
and landing problem and the design of flight trajectories.
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A. Rocket Dynamics

This appendix presents the 6 DoF dynamical model of the rocket. This model is used both for the verification
of the controller, and to identify disturbances and burnout positions using Monte Carlo simulations.

A.1 Variables and Parameters Definition

Variables
z nominal height
v nom. vertical velocity and accel.
v̇ vertical acceleration
x rocket state
r position of CoM
q attitude quaternion
v,ω linear and angular velocities
Fg gravitational force
FA axial aerodynamic force
FN normal aerodynamic force
τN normal torque
τ damp thrust damping torque
α angle of attack
Ma Mach number
eroll longitudinal/roll axis
rCoP location of center of pressure
rCoM location of center of mass
CA axial drag coefficient
CN normal drag coefficient
vapp apparent velocity
vwind wind velocity
α angle of attack
R rotation matrix

Environment Variables and Parameters
g std. gravitational acceleration
ρ(z) air density
σwind(z) wind speed std. dev.
w∗ convective velocity scale
zi average mixed layer depth

Rocket Parameters
m mass at burnout 4.2525 kg
I diagonal inertia at

burnout (Ix, Iy = Iz)
0.035, 4.6 kg m2

Lrocket rocket length 1.842 m
θpad launch rail angle 90°
Aref reference area 81.7×10−4 m2

Abrakes control surface area 34.5×10−4 m2

CD0 nom. brakes drag coeff. 1.17
rbrakes airbrakes position 1.54 m
hbrakes max. airbrakes length 0.021 m

Parameters at burnout, u = 0, α = 0

z height 232 m
|v| velocity 166 m s−1

x̄stab stability margin 0.408 m
CA axial drag coefficient 0.35
CNα normal drag coeff. derivative 13.6

Parameters at burnout, u = 1, α = 0

CA axial drag coefficient 0.79
Cdamp damping moment drag coeff. 4.88

Forces Diagram

rCoMrCoP vapp

F gFNFA

α
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A.2 Dynamics

The rocket is modeled as a rigid body of mass m and inertia matrix I. It is described by its state x =
[r; q; v;ω] ∈ R12, with r = [x; y; z] ∈ R3 the position of the center of mass, q = [qw,qv] ∈ R4 the quaternion
describing its orientation, v ∈ R3 the linear velocity and ω ∈ R3 the angular velocity. The system is actuated
using the control inputs u ∈ U = [0, 1], representing the airbrakes extension. To simplify notations, we
dropped the dependency on the time t and all quantities are expressed in an inertial frame which origin is
aligned with the launchpad with the z-axis pointing upwards. Also, as control of the rocket is allowed only
after motor burnout, no motor thrust is acting and the mass and inertia are constant. The evolution of the
system is thus governed by its dynamics f(·) with uncertain parameters ζ ∈ Rp as

ẋ =


ṙ
q̇
v̇
ω̇

 = f(x,u, ζ) =


v

[ 12 (ω · qv); 1
2 (qwω + (ω × qv))]

1
m (Fg + FA(u) + FN )

I−1 (τN + τ damp)

 , (23)

with Fg,FA(u),FN the gravitational, axial drag and normal drag forces and τN , τ damp the normal and
damping drag torques. To compute all forces and torques, we assume subsonic speeds and small angles of
attack α. Also, the rocket is assumed to be symmetrical along its longitudinal roll axis eroll with respect to
its mass distribution and aerodynamical forces. eroll thus passes through the centers of mass rCoM := r and
of pressure rCoP , defined in Equation (32). Denoting the Euclidean norm of a vector v ∈ Rn as ‖v‖, the
forces and torques are defined as

Fg = mg Gravity (24a)

FA(u) = −ρ(z)

2
ArefCA(x, u)‖vapp‖2 · eroll Axial (24b)

FN =
ρ(z)

2
ArefCN (x)‖vapp‖2 ·

(
eroll × (eroll ×

vapp
‖vapp‖

)

)
Normal (24c)

τN = x̄stab‖FN‖ · (eroll × vapp) Normal (24d)

τ damp = −Cdamp(x)(R diag[1, 1, 0] R−1)ω, Damping (24e)

with g the standard gravitational acceleration, ρ(z) the air density, Aref the reference area, α the angle of
attack, vapp the apparent velocity, eroll the longitudinal roll axis of the rocket, x̄stab = ‖rCoP − rCoM‖ the
stability margin, R the rotation matrix transforming a vector in body frame to the inertial frame, diag[1, 1, 0]
a diagonal matrix with {1, 1, 0} as diagonal elements, and CA, CN , Cdamp the axial, normal and damping
drag coefficients, defined in section A.3. τ damp in Equation (24e) is computed as in [7]. Velocity-dependent
terms are defined as

vapp = vCoP + vwind(z) Apparent Velocity of CoP (25a)
vCoP = vCoM + ω × (rCoP − rCoM ) Velocity of CoP (25b)

α = cos−1
(

vapp
‖vapp‖

· eroll
)
, Angle of Attack (25c)

with vCoP and vwind(z) the center of pressure and wind velocities, α the angle of attack. ρ(z) is computed
according to the US Standard Atmosphere 1976 [19]. We model the wind velocity as following a zero-mean
Gaussian distribution as

vwind(z) := [0; 0; vwind,z(z)], vwind,z(z) ∼ N
(
0, σ2

wind(z)
)
, (26)

with the following empirical equation from [23] for the variance

σ2
wind(z) = 1.8 · w2

∗ ·
(
z

zi

)2/3

·
(

1− 0.8
z

zi

)2

, (27)

with w∗ the convective velocity scale, set to 2.0 m/s [25] and zi the average mixed layer depth, set to
500m [14]. This corresponds to a zero-mean vertical turbulent flow in the Atmospheric Boundary Layer.
This is to contrast with work such as [11] which is only interested in horizontal wind. Note that this model
of the wind gives low variances for high altitudes and that the variance is zero at ground level.
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A.3 Drag Coefficients

In this section, the drag aerodynamic coefficients used to compute aerodynamic forces and torques in Equa-
tions (24) are defined. The values of these coefficients were verified experimentally in wind tunnel tests.

First, the total axial drag coefficient CA(x, u) is computed using a weighted average of the axial
drag coefficients of the rocket CA,rocket and of its airbrakes CA,brakes, normalized by their respective ar-
eas Aref , Abrakes as

CA(x, u) = CA,rocket + u
Abrakes
Aref

CA,brakes, u ∈ [0, 1]. (28)

The axial drag coefficient of the rocket CA,rocket(x) is computed according to the DATCOM method,
originally introduced by Mandell [18]. It includes the contributions of the drag from the body CD,fb, the base
CD,b, the fins CD,f and the interference between fins and body CDi of the rocket. Based on the assumption
of a small angle of attack, the drag force is assumed to be approximately aligned with the longitudinal axis
of the rocket eroll. After applying an additional correction for the compressibility of the air flow as in [7],
with Ma the Mach number, the axial drag coefficient is computed as

CA,rocket(x) ≈ (CD,fb + CD,b + CD,f + CDi + CD,add)
1√

1−Ma2
. (29)

To include the drag due to the deployment of the airbrakes, the control surfaces are approximated as
rectangular plates with a maximum extension length hbrakes and area Abrakes at a position rbrakes along the
rocket. The area-normalized axial drag coefficient of the airbrakes CA,brakes can thus be computed according
to [16, 3-17] as

CA,brakes = CD0

(
1− 0.25

δ

hbrakes

)
, (30)

where CD0 is the nominal drag coefficient of a quadratic plate and δ denotes the boundary layer thickness of
the air flow around the airbrakes, which depends on the local Reynolds number as defined in [18].

Second, according to Barrowman [2], the normal force coefficient CN can be computed as the product of
the angle of attack α with the sum of the body CNα,B , nosecone CNα,N , fins CNα,F and fins-body interference
CNα,T (B) drag coefficient derivatives, with a correction term CNα2 defined by Galejs [13] to account for body
lift, as

CN (x) = CNαα (31a)
CNα = CNα,B + CNα,N + CNα,F + CNα,T (B) + CNα2 . (31b)

As the airbrakes are symmetrical with respect to the longitudinal axis of the rocket and are actuated with a
single motor, no normal drag is induced by the airbrakes.

Finally, the damping moment drag coefficient Cdamp(x) is determined according to [18, 202]. To com-
pute the normal torque τN using the stability margin x̄stab, it is necessary to compute the position of the
center of pressure rCoP . Given the respective centers of pressure rCoP,i of the different sections of the rocket
(body, nosecone, ...) [2], it is computed as a weighted sum of each drag coefficient derivative CNα,i as

rCoP =

∑
rCoP,i CNα,i∑

CNα,i
. (32)

A.4 Monte Carlo simulations

The random parameters ζ = [fmotor, fCD , θpad,vwind] incorporate the effects of different motor efficiencies,
aerodynamic coefficient correction factors, launchpad rail headings and wind velocities where the velocity
at each altitude vwind(z) follows Equation (26). The other parameters are drawn according to fmotor ∼
Unif(90%, 110%), fCD ∼ Unif(95%, 105%) and θpad ∼ Unif(89◦, 91◦), where Unif(a, b) denotes the uniform
distribution with values in [a, b]. To account for possible drag coefficient modeling errors, we simulate the
system by replacing CA(x, u) with fCDCA(x, u) to compute axial drag forces in Equation (24b). To compute
burnout positions and simulate the system, the rocket is initially on the launchpad and pointing upwards
with a pitch angle θpad. Until motor burnout, it is subject to a thrust force fmotorT (t) eroll and the varying
thrust, mass and inertia T (t),m(t), I(t) depend on the thrust curve of the motor4.

4For the AeroTech J460 motor mounted on the rocket, the thrust curve used in the simulator can be found on thrustcurve.org.
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